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Cer ta in  re la t ions  in the s e m i e m p i r i c a l  theory of turbulence a re  analyzed,  for  the purpose  of 
genera l iz ing  the known t r a n s p o r t  mode ls  and deriving new functional r e l a t ions .  

Using the K a r m a n  method [1], we wri te  the equation of flow 

Dw _ gradp_J ~ 0 [ ( 0 ~  ) ]  2 
P Dt ~ x  i ~ -t- gradwi - - ~ -  grad(~divw) 

in a sy s t em of coordinates  moving at an average  velocity at any given point in the s t r e a m .  
new s y s t e m  of coordinates  will be placed at that pa r t i cu l a r  point.  

Consider ing a s teady,  un i form,  and i so the rmal  average  flow along the z - ax i s ,  we obtain in the 
d imens ion less  coordinates  

a~=xi/l; fi=w~/A, 

the following equation 

(1) 

The origin of a 

(2) 

of of l d~ of F 
at' +~ , -~~- ,  + 2 - "  -d-b- ~'~-~-~, - f~ 

l ~ gradp' v O ( OI ) 
. . . .  pA - - - i -  dz pA ~ -t- - - ~  �9 ~ ~ + grad f~ 

+ v j _ /  . d~w 2 v g r a d d i v f .  
A" dy ~ 3 At 

By the well known ~Method of Equations" we can ex t rac t  he re  four s imi la r i ty  number s :  

_ _  . - -  t ~ d2w l d_~w (a); l d_~p (b); Al (c); - -  . ~ (d). 
A dy pA ~ dz ~, A dy ~ 

In i ts  meaning,  the (4c)-number  co r re sponds  to the Reynolds number  fo r  a pulsat ing flow. 

According to the Third Theo rem  of Similar i ty ,  as the length scale  ~ it will be convenient to choose 
e i ther  the dis tance f rom the wall or  the dimensions  of a displaced volume (mole) of fluid which p roduces  
veloci ty  pulsa t ions .  

As a scale  for  the pulsation component of velocity it will be convenient  to use  i t s  r m s  value.  One 
may  cons ider  he re  two ex t r em e  cases :  l a rge  and smal l  values  of the (4c)-number .  Large  values do, ob-  
viously,  cor respond  to l a r g e - s c a l e  pulsat ions f a r  f rom the wall .  Small values  cor respond  to s m a l l - s c a l e  
pulsat ions e i ther  n e a r  the wall within the l a m i n a r  sublayer  or  f a r  f rom the wall but at smal l  velocity 
pulsa t ions .  

We note that  the (4c)-number appea r s  in the denominator  of the th ree  las t  t e r m s  in Eq. (3), which 
account for  the effect  of v i scos i ty .  

(3) 

(4) 
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For  this r ea son ,  in the ex t r em e  case  of l a r g e - s c a l e  pulsat ions  only the number s  (4a) and (4b) r ema in  
in Eq. (3), while in the case  of s m a l l - s c a l e  pulsat ions  the re  r emain  only the l as t  th ree  number s :  (4b), (4c), 
and (4d). 

According to Newton 's  t heo rem,  the s imi la r i ty  in the case  of l a r g e - s c a l e  pulsat ions is  thus c h a r a c -  
t e r i zed  by a constant  (4a)-number ,  which m a k e s  it poss ib le  to define a scale  for  the pulsation component  
of velocity:  

A ~ i ~ (5) 
dg 

This re la t ion co r r e sponds  to the fundamental  Prandt l  express ion  in the theory  of momen tum t r a n s f e r .  

Consequently,  the theory  of momen tum t r a n s f e r  i s  appl icable only to l a r g e - s c a l e  pulsa t ions  f a r  f r o m  
the wai l .  Specif ical ly,  th is  explains  the fa i lure  of a t tempts  to approx imate  the veloci ty prof i le  in the t r a n s i -  
tion l aye r  and in the l a m i n a r  sublayer  with the aid of re la t ion  (5). The s imi l a r i ty  in the case  of s m a l l -  
scale  pulsa t ions  is  cha r ac t e r i z ed  by a constant  (4d)-number .  Here  a scale  for  the pulsation component  
of veloci ty is  defined by the re la t ion:  

d ~  (6) A N F- - -  
dv ~ 

Velocity pulsat ions  within the l a m i n a r  sub layer  should va ry  according to this re la t ion .  

For  in te rmedia te  values  of the (4c)-number ,  the universa l  equation should contain all (4 ) -numbers .  
Specifically,  mult iplying (4a) by (4d) and equating the i r  product  to (4b), we obtain the well known re la t ion 
which corresponds to Taylor's theory of vorticity transport: 

dp -- const pl 2 d~_m d~m (7) 
dz dy dy 2 

If we divide (4a) by (4d), however ,  and cons ider  the sca les  for  the pulsation component  of veloci ty  
to be propor t iona l ,  then we obtain a re la t ion which co r r e sponds  to K a r m a n ' s  "Similar i ty  Theory  of 
Ve loc i~  Pul sation s":  

dy / dy ~ 

Consequently,  K a r m a n ' s  "Simi lar i ty  Theory"  and T a y l o r ' s  theory  of vor t ic i ty  t r a n s p o r t  cor respond  
to the m e d i u m - s c a l e  flow region,  where  both l a r g e - s c a l e  and s m a l l - s c a l e  pulsat ions occu r .  

In the genera l  case ,  according  to the Second 'Law of Simi lar i ty ,  t he re  a re  poss ib le  also o ther  r e l a -  
t ions between the (4) -numbers ,  which will extend the applicabi l i ty  of these  (4) -numbers  beyond the l i m i t a -  
t ions of the theor ies  by Prandt l ,  Ka rm an ,  and Tay lo r .  

found 
In pa r t i cu l a r ,  quite useful  for  calculat ing the veloci ty pulsat ions  in the t rans i t ion l aye r  may be 
the re la t ion  which involves the product  of (4a) and (4d): 

A~ ~ Ia d w d~v (9) 
dy dy 2 

Th.  v .  K a r m a n  [1] cons idered  Eq. (1) without the th ree  v iscos i ty  t e r m s  and thus omit ted in his ana ly-  
s is  impor tan t  clues about the meaning  and the role  of the las t  two s imi l a r i t y  number s  he re :  (4c) and (4d). 

Relat ion (6), which Th.  v. K a r m a n  has  der ived by a s e r i e s  expansion of the mean veloci ty ,  is 
r a t he r  random in na ture ,  s ince it impl ies  the poss ibi l i ty  of infinitely many  s imi la r i ty  number s  containing 
h i g h e r - o r d e r  de r iva t ives .  

F r o m  the (4) -numbers  one can der ive  an express ion  which extends the hypothes is  concerning local 
p r o p e r t i e s  to the case  of molal  and mo lecu l a r  t r a n s p o r t  [2]. 

El iminat ing the scale  for  the pulsat ion component  of velocity f rom (4a) and (4c), we obtain the ex-  
p r e s s ion  

12 d~ R, (10) 
v dy 
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which is cal led in [2] the local  Reynolds number .  With the R - n u m b e r  as the independent var iab le ,  one can 
cons t ruc t  a smooth velocity prof i le  e i ther  in p a r a m e t r i c  fo rm [2] o r  in t e r m s  of a functional re la t ion [3]. 
The group of (4) -numbers  o f fe r s  an in te rpre ta t ion  of t h e  stabil i ty c r i t e r ion  for  a l a m i n a r  sublayer  in a 
g rad ien t - type  flow. The stabil i ty c r i t e r ion  is  defined in [4] as 

dw y2 
. . . .  134. (ii) 

dy 

It is to be noted that this relation is equivalent to (10) and reflects the application of the First Theorem 
of Similarity to the product of number (4a) by number (4c). Only large-scale pulsations have been con- 
sidered here. 

In addition to (11), one can also establish an analogous stability criterion for medium-scale pulsa- 
tions: 

d~w yS 
= const. (12) 

dy 2 v 

In pr inc ip le ,  i t  is  poss ib le  to es tabl i sh  a s tabil i ty c r i t e r ion  also on the bas i s  of o ther  combinat ions  
of the (4 ) -numbers .  

In the case  of var iab le  the rmophys ica l  p rope r t i e s ,  we have instead of the (4d)-number:  

A / "  a--g ~ " (13) 

An analys is  of the energy  equation indicates  the poss ib i l i ty  of introducing the concept of l a r g e - s c a l e  
and s m a l l - s c a l e  t e m p e r a t u r e  pulsa t ions ,  which a re  analogous in the i r  meaning to r e spec t ive  veloci ty 
pulsa t ions .  Such an analys is  has  yielded two additional s imi la r i ty  numbers :  

l dT (a); ~ (b). (14) 

As an example  of how these  new re la t ions  between (4) -numbers  can be applied, we will cons ider  
t he i r  e f fec t iveness  in de te rmin ing  the pulsat ion component  of veloci ty  according  to (9). 

Inse r t ing  into the well known original  equation 

dw 

the sca les  for  the pulsation component  of veloci ty  f rom (9), and assuming  a propor t ional i ty  between longi-  
tudinal and t r a n s v e r s e  pulsa t ions ,  and introducing the va r i ab l e s  

Y -b- 
n ; q0= - - - - = - - . ,  (16) , k / v  

P 

we obtain 

I =m'+f (n) ~'~"n ~. 

Here  f0?) denotes a propor t ional i ty  fac tor  which includes the cor re la t ion  coefficient  and which, genera l ly ,  
is  a function of the dis tance f rom the wall .  With r e spec t  to the f i r s t  der iva t ive  he re ,  Eq.  (17) r e p r e s e n t s  
a special  case  of the Abel equation of the second kind and does not yield quad ra tu r e s .  We will solve this  
equation approximate ly  by the i te ra t ion  method.  

Assuming ,  to the f i r s t  approximat ion ,  that  

(17) 

q~'= 1/Z~l, (18) 

(19) 

we find 

]~"i = I / ~ n  ~. 

Inser t ing  this  value into (17), we obtain the second approximat ion:  
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~ ' = (  I+ f~ ) -1"7 . /  (20) 

The absolute value is  taken in (19), because  pulsat ions  in both the pos i t ive  and the negat ive direct ion p r o -  
duce Posi t ive shear ing  s t r e s s e s  (the PrandtI  hypothesis) .  

(17) : 
The subsequent  third approximat ion  will be obtained by different ia t ing (20) and then inse r t ing  it into 

' =  - -  2 " - -  ~ l a  " ( 2 1 )  

Stopping at th is  approximat ion  and assuming .  

[ 01)=e I 0, 

we obtain an equation which co r r e sponds  to the velocity distr ibution in the case  of the " four th -power"  law 
of pulsat ion penet ra t ion  into the l a m i n a r  sublayer :  

I 1- 
�9 A C2:~] ~ l 

~0' = 2 (22) 
.1 + (1 + c~la/2/)~) 2 

�9 Constants  e and • can be de te rmined  f rom the functional boundary conditions: 

1) when ~1-+0 ~0'= 1/(1 +(m])% (23) 

with the De i s t e r  constant  n = 0.124, and 

2) when ~l>>0 q~': 1/0,4~. (24) 

Applying the r e spec t i ve  l imi t s  to Eq. (22) and then compar ing  with (23) and (24), we have 

3 c 2 3 .... (0.124) ~ a n d - -  z-~0,4 
2 X 2 

or  • = 0.2667 and c z = 2/3  (0.124) 4 0.2667 = (0.0805) 4. Inse r t ing  this value into (22) y ie lds  

5.624 (0.0805n) ~ (25) 
i2 �9 w ' =  1+ (~176176 i 

, 1+ 0.2667~ ~ j 

A numer i ca l  in tegrat ion of this  express ion  yie lds  a smooth veloci ty prof i le  ove r  the ent i re  flow region 
which a g r e e s  c lose ly  with the exper imenta l  r e su l t s  obtained by H.  Reihardt  [5] and I .  Laufer  [6]. We note 
that  the veloci ty  prof i le  based on (25) has  been obtained by using only two empi r i ca l  cons tan ts ,  while the 
o~her known prof i l e s  [5] and [7] involve at l eas t  th ree  such cons tan ts .  

If we let  f67) = cons t . ,  then Eq.  (21) will yield a th i rd -power  law of pulsation penetra t ion into the 
l a m i n a r  sub layer ,  which c lose ly  app rox ima te s  the velocity prof i le  obtained exper imenta l ly  even with only 
two cons tan t s .  

The equation for  the f i r s t  de r iva t ive  becomes  then 

[ 2-5(0,i03~)a ] -' (26) 
m'= 1+ (1+0.805n) z �9 

An approximat ion  of the veloci ty  prof i le  by a second-power  or  by a f i f th-power  law of pulsat ion 
penetra t ion into the l a m i n a r  sub layer  has  not been success fu l .  

NOTATION 

p is  the density; 
w is  the veloci ty  vector ;  
x. is  the Car te s i an  coordinate;  

1 
# is  the dynamic v iscos i ty ;  
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a i  
l 
fi 
A 

P 
p' 

Y 

W 

Z 

Y 
T 
B 

T 

~ ,  ,../T25-_,-'-'~, 
v ~w z) 

is  the dimensionless  coordinate;  
is  the lengths scale; 
is  the dimensionless  pulsation component of velocity; 
is  the scale for  the pulsation component of velocity; 
is  the average p res su re ;  
is  the pulsation component of p re s su re ;  
is  the kinematic viscosity;  

i s  the longitudinal component of average velocity; 
is  the longitudinal coordinate;  
is  the t r ansve r se  coordinate;  
is  the t empera ture ;  
is  the scale for  the pulsation component of t empera ture ;  
~s the shearing s t ress ;  
i s  the cor re la t ion  coefficient;  

a r e  the rms  values of the pulsation component of veloci ty ,  

L I T E R A T U R E  C I T E D  

1. Th.  v. Karman,  T r a n s .  ASME, 6___1 (1939). 
2. L . G .  Loi tsyanski i ,  T r a n s .  All-Union Congr.  on Theor .  and Appl. Mechanics [in Russian],  Izd.  

Akad. Nauk SSSR, Moscow-Leningrad  (1962), p .  145. 
3. L . A .  Bulis and Dzhaugashtin, Teplofiz .  Vys. T e m p . ,  8, No. 1 (1970). 
4. S . S .  Kutateladze andA.  I .  Leont 'ev,  Turbulent  Boundary Lay e r  in a Compress ib le  Gas [in Russian],  

Izd.  Sibirsk.  Otdel. Akad. Nauk SSSR, Novosibirsk (1962). 
5. H. Reihardt ,  Mathem. und Mechan. ,  3__.1, No. 7, 193 (1951). 
6. I .  Laufer ,  Nat.  Advis. Comm.  Aeronaut .  Tech.  Repor t  No. 1174 (1954). 
7. E.  Dre is t ,  JAS, 23, No. 11 (1956). 

336 


